Технологии пайке |

Часть 11

Среда, 14 Окт 2009

Через серебряное покрытие на меди может быть осуществлена контактно-реактивная пайка с образованием в паяном шве хрупкой эвтектики Al — Ag — Си. Такие паяные соединения могут быть использованы только в несидовых конструкциях.

Соединение алюминия со сталью, в том числе и с нержавеющей, облегчается при предварительном лужении поверхности стальной детали легкоплавкими свинцово-оловянистыми припоями, алюминием и алюминиевыми припоями с применением активных флюсов на основе хлористых и фтористых солей.

При пайке алюминия со сталью очень важно строго ограничивать режим из-за опасности образования хрупких интерметаллидов в паяных швах. Время выдержки не должно превышать 1—4 мин, температура пайки также не должна превышать заданного предела.

Пайка алюминия с титаном возможна только по слою алюминия или олова, нанесенных на поверхность титана путем горячего лужения.


Часть 10

Вторник, 13 Окт 2009

Основные трудности при осуществлении процесса пайки алюминия с указанными материалами заключаются в трудности выбора флюса или газовой среды, обеспечивающих удаление окислов с поверхностей столь разнородных материалов; в образовании хрупких соединений из-за возникновения интерметаллидов в зоне шва; в наличии большой разницы температурных коэффициентов линейного расширения алюминия и перечисленных выше материалов.

Первые два осложнения успешно преодолевают при предварительном нанесении на поверхности соединяемых материалов защитных металлических покрытий.

Пайку алюминия с медью можно успешно осуществить по никелевому покрытию, нанесенному на алюминий химическим способом. Пайку производят в водороде припоем состава 49% Ag, 20% Си, 31% In; температура пайки близка к температуре плавления алюминия.

Пайка алюминия с медью и ее сплавами может также быть осуществлена путем нанесения защитных покрытий типа цинк, серебро и их сплавы на поверхность меди. При этом используют припои на основе олова, кадмия, цинка.


Часть 9

Вторник, 13 Окт 2009

В связи с тем, что при ультразвуковом лужении отмечается сильная эрозия основного металла, лужению этим способом нельзя подвергать детали с толщиной стенок менее 0,5 мм. Имеется также способ абразивно-кавитационного лужения. При этом способе лужения твердые частицы, находящиеся в жидком припое, в ультразвуковом поле оказывают дополнительное абразивное воздействие на металл.

При пайке алюминия припоями-пастами на основе галлия в качестве наполнителя паст служат алюминий и сплав алюминия с магнием. Температура пайки 200— 225° С, время выдержки 4—6 ч. Предел прочности соединений составляет 3—5 кгс/мм2.

При пайке по полуде чистым галлием с последующей термообработкой предел прочности соединения составляет 2,8—3,8 кгс/мм2. Паяные швы выдерживают ударные, вибрационные и термоциклические нагрузки, обеспечивают вакуумную плотность не ниже 10~2 мм рт. ст. и имеют удовлетворительную коррозионную стойкость.

Применяют также пайку цинковыми припоями по серебряному покрытию, нанесенному на поверхность алюминия предпочтительно термовакуумным напылением с последующей термообработкой.

Разработан ряд технологических процессов, обеспечивающих надежное соединение алюминия с медью и ее сплавами, со сталью, никелевыми и другими сплавами.


Часть 8

Вторник, 13 Окт 2009

Бесфлюсовую пайку алюминия припоями типа 34А, силумин ПСр 5АКЦ можно производить по предварительно луженной поверхности припоем П200А. Лужение производят абразивным способом, толщина слоя должна составлять 0,03—0,05 мм на сторону. Нагрев под пайку рекомендуется производить в печи, в потоке аргона или на воздухе индукционным способом.

Известны способы низкотемпературной пайки без применения флюсов, такие как абразивная пайка или пайка трением. При этом способе пайки окисную пленку с поверхности алюминия можно удалить шабером, металлическими щетками, частицами абразива (асбест, металлические порошки, первичные кристаллы сплавов-припоев, в твердожидком состоянии и т. п.), находящимися в расплаве припоя. Применяют также абразивные паяльники для лужения алюминия, у которых рабочая часть паяльника представляет собой стержень из частиц припоя и абразива.

Собственно операция пайки осуществляется уже после абразивного лужения путем обеспечения плотного контакта по луженым поверхностям при температуре полного расплавления припоя. Возможна подпитка шва припоем.

Ультразвуковое лужение можно производить с помощью ультразвуковых паяльников и в ультразвуковых ваннах.


Часть 7

Вторник, 13 Окт 2009

Коррозионная стойкость соединений повышается при пайке по цинковым по¬крытиям и, в частности, по слою сплава Zn + 5% А1, нанесенному на поверхность алюминия методом горячего плакирования. Пайку по цинковому покрытию рекомендуется вести припоем типа ПОСК51 с удалением окисных пленок трением или флюсом на основе эвтектики NaOH и КОН, вводимой в количестве до 20% в глицерин.

Известны бесфлюсовые способы низкотемпературной пайки. Бесфлюсовую пайку алюминия можно осуществить в газовых средах без применения защитных покрытий контактно-реактивным методом. В качестве припоя применяют кремний, медь или серебро, которые наносят на алюминий гальваническим путем, термовакуумным напылением или плакировкой. Высокое качество паяного соединения получают при пайке в вакууме 10"мм рт. ст. и толщине покрытия 10—12 мкм.

Пайку алюминия припоями типа силумина осуществляют в специальных газовых средах. В качестве последних используют смеси аргона с парами магния. Такая атмосфера способна при температуре 550—580° С восстанавливать окись алюминия и обеспечивать смачивание паяемой поверхности припоями типа силумин. При пайке алюминиевых сплавов в атмосфере паров магния последний переходит из газовой фазы в расплав. Предел прочности соединений сплава АМгб, выполненных этим способом, составляет 35,2—35,8 кгс/мм2, а для сплава АМц 11,5—12,5 кгс/мм2. Коррозионная стойкость получаемых соединений намного выше соединений, чем при флюсовой пайке.


Часть 6

Вторник, 13 Окт 2009

Наиболее высокое качество сцепления покрытия с основным металлом и коррозионную стойкость паяных соединений обеспечивает применение никель-фосфорных покрытий, наносимых на поверхность алюминия химическим способом из специальных гипофосфитных растворов.

Оптимальная толщина покрытия 17—25 мкм. После нанесения покрытия деталь подвергают термообработке в защитной среде (аргон или вакуум) при температуре 200° С в течение 1 ч, что приводит к повышению прочности сцепления покрытия с поверхностью основного металла.

Пайка по покрытию легко осуществима оловянно-свинцовыми припоями с применением канифольно-спиртовых флюсов или на основе водных растворов хлористого цинка.

Коррозионная стойкость таких соединений намного выше соединений алюминия, выполненных без защитных покрытий.

Соединения из сплава АМц и Д16, выполненные по никель-фосфорному покрытию припоем ПОС 61, обеспечивают предел прочности на срезе 3—5 кгс/мм2. После годичных испытаний в 3%-ном растворе поваренной соли прочность соединений снижается лишь на 15—18%.

Коррозионная стойкость соединений по медному покрытию, особенно в коррозино-активных средах, гораздо ниже, чем по никель-фосфорному покрытию.


Часть 5

Вторник, 13 Окт 2009

Однако флюсы могут оказаться внутри паяного шва, и такая обработка не устранит опасности возникновения очагов коррозии. В этом заключается основной недостаток флюсовой пайки алюминиевых сплавов.

Низкотемпературную пайку алюминия и его сплавов припоями на основе олова можно осуществить с применением флюсов на основе высококипящих органических соединений типа триэтаноламина с добавками в качестве активных компонентов борфто-ридов кадмия и цинка. Применение этих флюсов хотя и обеспечивает удаление окиси алюминия при пайке, но в промышленности они не нашли широкого распространения, так как не обеспечивают получения надежных и герметичных соединений. Кроме того, компоненты легкоплавких припоев в паре с алюминием образуют коррозионно нестойкие соединения из-за большой разности нормальных электродных потенциалов. Такие соединения не способны работать в коррозионно-активных средах.

Указанные недостатки и затруднения исчезают при использовании технологических покрытий под пайку. В качестве таких покрытий при низкотемпературной пайке алюминия принято использовать медь, никель, серебро, цинк и т. п. Покрытие может быть нанесено электролитически, химически, термовакуумным напылением и т. д.


Часть 4

Вторник, 13 Окт 2009

При пайке погружением в расплав флюса необходим предварительный подогрев изделий до 400—500° С. Сборку изделий под пайку производят с помощью специальных приспособлений, не взаимодействующих с солевыми расплавами. Приспособления изготовляют из нержавеющих сталей, инконеля, керамики.

Своеобразной разновидностью флюсовой высокотемпературной пайки алюминия и его сплавов является реактивно-флюсовая. Флюсы-пасты для этой цели, как правило, содержат до 90% активных хлоридов. При использовании таких паст наблюдается заметная эрозия основного металла. Рекомендован способ пайки, лишенный указанных недостатков [И]. В этом случае пайку производят путем погружения в солевую ванну, в состав которой вводят небольшое количество (в сумме до 1%) активных хлоридов типа хлористого цинка, хлористого олова, хлористого кадмия и пр.

В связи с тем, что остатки флюсов чрезвычайно коррозионноактивны, особенно при эксплуатации паяных соединений в электропроводящих средах, необходимо после пайки изделия подвергать тщательной обработке с целью удаления остатков флюсов. Для этого детали сразу же после пайки подвергают тщательной промывке в горячей и холодной проточной воде с последующей обработкой в 5%-ном растворе азотной кислоты или 10%-ном растворе хромового ангидрида.


Часть 3

Понедельник, 12 Окт 2009

Пайка в солевых ваннах отличается высокой производительностью. В связи со значительной температурой пайки (580—620° С) этим способом паяют сплавы с высокой температурой ликвидуса: АД1, АМц и др. Припои должны быть заранее нанесены в виде покрытия или плакирующего слоя (пайка пластинчатых теплообменников).

В случае пайки в солевых расплавах состав флюсовой ванны не должен содержать активных хлоридов типа ZnCl2 из-за сильного растворения основного металла. Для „нормальной работы ванны необходимо тщательное удаление из расплава влаги и солей тяжелых металлов. Для этого солевую ванну протравляют алюминием при температуре около 600° С. Еще более высокой степени очистки удается достигнуть применением порошка сплава 30% А1 и 70% Mg.

При подготовке поверхности деталей из алюминиевых сплавов к пайке рекомендуется после обезжиривания деталей производить травление их в 10—15%-ном растворе едкого натра при температуре 60° С с последующей промывкой в холодной воде и обработкой в 20%-ном растворе азотной кислоты, после чего следует тщательная промывка в проточной горячей и холодной воде и сушка горячим воздухом. Пайку рекомендуется производить не позже чем через 6—8 ч после травления.


Часть 2

Понедельник, 12 Окт 2009

Высокотемпературная флюсовая пайка алюминия и его сплавов может производиться с применением газопламенного, печного, индукционного, контактного нагрева, а также путем погружения в расплавы флюсов.

Для пайки алюминиевых деталей применяют пламя бензовоздушных и газовоздушных горелок. Ацетиленокислородное пламя непригодно, так как оно снижает активность флюсов.

Для пайки тонкостенных ажурных конструкций из алюминиевых сплавов хорошие результаты обеспечивает печной нагрев. Скорость нагрева под пайку зависит от толщины стенок соединяемых деталей.

Температуру печной пайки с применением припоя 34А и флюса 34А поддерживают в пределах 550—560° С, при пайке эвтектическим силумином 580— 600° С.

Применение флюса 34А при печном нагреве опасно ввиду возможности значительного растворения основного металла цинком, выделяющимся из флюса. В случае пайки тонкостенных деталей это может привести к сквозному проплавлению. Лучшие результаты дает применение флюсов, в которых хлористый цинк заменен на хлористое олово, хлористый кадмий или хлористый свинец.

Это приводит к резкому снижению растворения паяемой поверхности металлом, выделяющимся из флюса.


Часть 1

Понедельник, 12 Окт 2009

Алюминий и его сплавы находят широкое применение для изготовления паяных конструкций в авиационной, электротехнической, радиотехнической и ряде других отраслей промышленности.

Особенности пайки алюминиевых сплавов определяются такими факторами, как высокая стойкость окисной пленки, низкая температура солидуса большинства промышленных сплавов, высокая теплоемкость алюминия.

Алюминий, обладая большим сродством к кислороду, образует химически и термодинамически стойкий окисел А1203, который находится на его поверхности в виде плотной и прочной пленки.

Состав и структура окисных пленок на поверхности алюминиевых сплавов зависят от состава последних. Так, на поверхности алюминиево-магниевых сплавов присутствует смесь окислов А1203 и MgO.

При пайке алюминиевых сплавов окислы удаляют флюсами в вакууме с добавлением паров магния, трением, абразивным и ультразвуковым лужением.

Кроме того, разработаны способы пайки путем контактного плавления, а также по защитным и барьерным покрытиям и др.

Для высокотемпературной пайки алюминиевых сплавов в качестве флюсов применяют смеси солей хлоридов щелочных и тяжелых металлов с добавками фторидов металлов. Пайку алюминия с указанными флюсами производят припоями на основе алюминия типа силумин, 34А, П575А, П300, П250 и др. Зазор при флюсовой пайке должен быть не менее 0,1—0,25 мм.